PEACE OF MIND IN A DANGEROUS WORLD

Wednesday, March 9, 2022 16:00 EET State of Play of Post Quantum Cryptography Webinar series Cryptography under the hood

Speaker **Matti Tommiska** CEO & Co-founder, Xiphera

Definitions

Post-Quantum Cryptography (PQC)

Cryptography which cannot be "broken" by quantum computers.

Quantum computing

Computation using quantum phenomena.

Quantum cryptography Exploits quantum mechanical

phenomena for cryptographic tasks.

Public-key (asymmetric) cryptography

Algorithms used in key exchange and digital signatures.

Secret-key (symmetric) cryptography

Algorithms used in encrypting and decrypting "bulk" traffic.

Effective key length

Achieved security level, not necessarily the same as key length.

Quantum Computers

- Computation based on quantum phenomena:
 - Super-position
 - Entanglement
- Qubits = "Quantum bits"
 - IBM: 127 qubits (Nov. 2021)
- "Cryptographically Relevant Quantum Computer (CRQC)"

The Quantum Threat

Peter Shor speaking after receiving the 2017 Dirac Medal from the ICTP. Author: International Centre for Theoretical Physics Source: https://www.youtube.com/watch?v=J7HeDX_7Heg&t=7075

- In 1994 Peter Shor introduced Shor's algorithm
 - A polynomial-time algorithm for solving integer factoring and (elliptic curve) discrete logarithms
- Shor's algorithm will break RSA and Elliptic Curve Cryptography if CRQCs become practical
 - Practically all Internet security relies on RSA/ECC
 - This is likely the biggest threat to contemporary cryptosystems
- Lesser concern: Grover's algorithm (1996)
 - Requires doubling the key length in symmetric cryptography to maintain the same security level (e.g. AES128 ⇒ AES256)

The Imminent Quantum Threat

"Record today, break tomorrow."

NIST PQC Competition

NIST PQC Finalists

Cryptotypes:

Structured lattices Codes Multivariate

Key Encapsulation Mechanisms (KEM)

Classic McEliece CRYSTALS-KYBER NTRU

Saber

KeyGen() \rightarrow (pk, sk) Encapsulate(pk) \rightarrow (ct, ss) Decapsulate(pk, sk, ct) \rightarrow (ss)

Signature schemes

CRYSTALS-DILITHIUM FALCON

Rainbow

KeyGen() → (pk, sk) Sign(sk, msg) → (sig) Verify(sig, msg, pk) → (msg)

Algorithm 5 KYBER.CPAPKE.Enc(pk, m, r): encryption

Input: Public key $pk \in \mathcal{B}^{12 \cdot k \cdot n/8 + 32}$ Input: Message $m \in \mathcal{B}^{32}$ **Input:** Random coins $r \in \mathcal{B}^{32}$ **Output:** Ciphertext $c \in \mathcal{B}^{d_u \cdot k \cdot n/8 + d_v \cdot n/8}$ 1: $N \coloneqq 0$ 2: $\hat{\mathbf{t}} := \mathsf{Decode}_{12}(pk)$ 3: $\rho \coloneqq pk + 12 \cdot k \cdot n/8$ 4: for *i* from 0 to k-1 do for *i* from 0 to k - 1 do 5 $\hat{\mathbf{A}}^{T}[i][j] \coloneqq \mathsf{Parse}(\mathsf{XOF}(\rho, i, j))$ 6 end for $7 \cdot$ 8: end for 9: for *i* from 0 to k-1 do $\mathbf{r}[i] \coloneqq \mathsf{CBD}_{n_1}(\mathsf{PRF}(r, N))$ 10: $N \coloneqq N + 1$ 11: 12: end for 13: for *i* from 0 to k - 1 do $\mathbf{e}_1[i] \coloneqq \mathsf{CBD}_{n_2}(\mathsf{PRF}(r, N))$ 14:15: $N \coloneqq N + 1$ 16: end for 17: $e_2 \coloneqq \mathsf{CBD}_{n_2}(\mathsf{PRF}(r, N))$ 18: $\hat{\mathbf{r}} := \mathsf{NTT}(\mathbf{r})$ 19: $\mathbf{u} \coloneqq \mathsf{NTT}^{-1}(\hat{\mathbf{A}}^T \circ \hat{\mathbf{r}}) + \mathbf{e}_1$ 20: $v \coloneqq \mathsf{NTT}^{-1}(\hat{\mathbf{t}}^T \circ \hat{\mathbf{r}}) + e_2 + \mathsf{Decompress}_a(\mathsf{Decode}_1(m), 1)$ 21: $c_1 := \mathsf{Encode}_d(\mathsf{Compress}_q(\mathbf{u}, d_u))$ 22: $c_2 \coloneqq \mathsf{Encode}_{d_v}(\mathsf{Compress}_a^{}(v, d_v))$ 23: return $c = (c_1 || c_2)$

Algorithm 6 KYBER.CPAPKE.Dec(sk, c): decryption

Input: Secret key $sk \in \mathcal{B}^{12 \cdot k \cdot n/8}$ Input: Ciphertext $c \in \mathcal{B}^{d_u \cdot k \cdot n/8 + d_v \cdot n/8}$ Output: Message $m \in \mathcal{B}^{32}$ 1: $\mathbf{u} \coloneqq \text{Decompress}_q(\text{Decode}_{d_u}(c), d_u)$ 2: $v \coloneqq \text{Decompress}_q(\text{Decode}_{d_v}(c + d_u \cdot k \cdot n/8), d_v)$ 3: $\hat{\mathbf{s}} \coloneqq \text{Decode}_{12}(sk)$ 4: $m \coloneqq \text{Encode}_1(\text{Compress}_q(v - \text{NTT}^{-1}(\hat{\mathbf{s}}^T \circ \text{NTT}(\mathbf{u})), 1))$ 5: return m

CRYSTALS-KYBER

Main operations are

- Number Theoretic Transform (NTT)
- Polynomial arithmetic
- Samplings from Centered Binomial Distributions (CBD)
- SHA-3/SHAKE computations (PRF, XOF)

PQC vs. current algorithm differences

- PQC key lengths significantly longer
- Latency examples
 - KYBER ja SABER generally slightly faster than current ECC
 - Classic McEliece likely fastest of all
 - For example, SIKE is slow

KEMs: Key and Ciphertext Sizes (in bytes)

	Algorithm	Status	Security	Private key	Public key
	ECC	Pre- Quantum	I	32	32
			5	64	64
	Classic McEliece	Finalist	I	6492	261120
			5	13932	1044992
	Kyber	Finalist	I	1632	800
			5	3168	1568
	NTRU	Finalist	I	935	699
			5	1590	1230
	Saber	Finalist	I	1568	672
			5	3040	1312
	SIKE	Alternate	I	374	330
			5	644	564

Recommendations

- Government agencies have given recommendations
 - BSI (Germany):
 - Classic McEliece or FrodoKEM (NIST alternate, lattice scheme)
 - ANSSI (France):
 - Post-quantum defense-in-depth as soon as possible for products requiring a long-lasting protection of information
 - FrodoKEM, Kyber, Dilithium or Falcon
- Hybrid key exchange in TLS 1.3 (draft IETF)
- Multiple key exchanges in IKEv2 (draft IETF)
- "hybridation" = co-existence of PQC and ECC/RSA

Key Take-aways

Co-existence of classical and PQC algorithms. Reprogrammability of FPGA is an advantage. Fixed solutions (ASIC, TPM) lack crypto agility. 2-3 years from algorithms to standards. Quantum Cryptography for niche applications.

> rece were broad, etc. Halls Receive third all pare rever numeric, std. all, liber

vectoridate width t downto () : and entity siz 2034h

Dytes, value

Logic, vector(deta_orders_1 downlo_0), din logic; last : in and logic; byten
dy : extint logic; digest `out std_logic; vector(deta_width-t downto 0)`); and antity rip303.

cand attactural: Sibrary tese: we leve std logic .1164 slir

last ; in still logic, bytes, valid ; in still logic, vector(2 downto 0); request

ling ready

Thank you!

No Bas ready

dounts 0), request, data

www.xiphera.com info@xiphera.com matti.tommiska@xiphera.com

port! cik

inter order t

as ses data buth ready

logis: digest - and atd_logis, vector(data_width_t downto 01); end entity sip3034h; i, aes ; aos_por; map (alk of http://www.aes_busy.etr_Reg__ax prr_Reg__ax prr_Reg__ax prr_Reg__ax are work as a set.et a

> > No. Store all

Atd logic: bytes

and entity sig 2034h

an ass. busy, are fing

Next webinar

vectoridate assist I downlo 01, din

June 8, 2022 Register at www.xiphera.com

it std loaie vectoridata

/webinars.php

PEACE OF MIND IN A DANGEROUS WORLD

I cik

tytes, valid ; in std logic, vestor 2 downto 0); request data

an reex sumeric std.ell, intrans work one work my sackeen-all; entity

es ready

ste work my package all.

as any ready, data out

downto 01 request data

as cik ret

www.xiphera.com info@xiphera.com matti.tommiska@xiphera.com

out std.

us and ready data out as sea data but ready

ready

1

X

Appendix

- https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/
- https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_S tudie-V_1_2.pdf?__blob=publicationFile&v=1
- https://www.ncsc.gov.uk/whitepaper/preparing-for-quantum-safe-cryptography
- Quantum computers
 - Credit: Shutterstock